 QUMRANET

KVM - Kernel-based Virtualiztion Machine

White paper



e
Today's hardware,
however is becoming
increasingly complex.
The so-called “basic”
scheduling operations
have to take into
account multiple
hardware threads

on a core, multiple
cores on a socket,
and multiple sockets
on a system.

Overview

The current interest in virtualization has led to the creation of several different hypervisors.
Most of these, however, predate hardware-assisted x86 virtualization, and are therefore some-
what complex pieces of software. With the advent of Intel VT (Virtualization Technology) and
AMD's SVM (Secure Virtual Machine), writing a hypervisor has become significantly easier
and it is now possible to enjoy the benefits of virtualization while leveraging existing open

source achievements to date.

Common Hypervisor Model

The common hypervisor model in use today consists of a software layer which multiplexes
the hardware among several “guest” operating systems. The hypervisor performs basic
scheduling and memory management, and typically delegates management and 1I/O functions

to a special, privileged, guest.

/
e = 9 \\.
i - G
s A ]
11O o
proxy proxy
e - A Unprivileged Unprivileged
7 ~ Guest | Guest 2
Privileged
Guest
kernel |
=3 ~ ) \ J Z
- X
Hypervisor

Figure 1 _ Hypervisor Based Architecture

Today's hardware, however is becoming increasingly complex. The so-called “basic”
scheduling operations have to take into account multiple hardware threads on a core, multiple
cores on a socket, and multiple sockets on a system. Similarly, on-chip memory controllers
require that memory management take into effect the Non-Uniform Memory Access

(NUMA) characteristics of a system.

While great effort is invested into adding these capabilities to hypervisors, we already have a
mature scheduler and memory management system that handles these issues very well — the

Linux kernel.

(28]

Copyright ©2006 Qumranet Inc.



e
By integrating into
the kernel, the

KVM ‘hypervisor*
automatically

tracks the latest
hardware and
scalability features
without additional
effort.

Linux as a Hypervisor

By adding virtualization capabilities to a standard Linux kernel, we can enjoy all the fine-tuning work
that has gone (and is going) into the kernel, and bring that benefit into a virtualized environment.
Under this model, every virtual machine is a regular Linux process scheduled by the standard Linux
scheduler. Its memory is allocated by the Linux memory allocator, with its knowledge of NUMA and

integration into the scheduler.

A normal Linux process has two modes of execution: kernel and user. KVM adds a third mode: guest

mode (which has its own kernel and user modes, but these do not interest the hypervisor at all).

A = o

~ o B ~

Guest Guest

mode mode

Normal User Normal User
| Process Process ; <N o
Qemu /O J ‘ Qemu IO
A 4 . .
7 \

Linux kernel ( KVM Driver w
L hE 4

Figure 2 - KVM Based Architecture
The division of labor among the different modes is:
* Guest mode: execute non-I/0O guest code

* Kernel mode: switch into guest mode, and handle any exits from

guest mode due to I/O or special instructions.
* User mode: perform I/0 on behalf of the guest.

By integrating into the kernel, the KVM 'hypervisor' automatically tracks the latest hardware

and scalability features without additional effort.

A Minimal System

One of the advantages of the traditional hypervisor model is that it is a minimal system (see Figure
2 above), consisting of only a few hundred thousands lines of code. However, this view does not
take into account the privileged guest. This guest has access to all system memory, either through
hypercalls or by programming the DMA hardware. A failure of the privileged guest is not recov-

erable as the hypervisor is not able to restart it if it fails.

A KVM based system's privilege footprint is truly minimal: only the host kernel plus a few

thousand lines of the kernel mode driver have unlimited hardware access.

3 Copyright ©2006 Qumranet Inc.



/

KVM Components
The simplicity of KVM is exemplified by its structure; there are two components:

* A device driver for managing the virtualization hardware;

this driver exposes its capabilities via a character device /dev/kvm

* A user-space component for emulating PC hardware;

this is a lightly modified qemu process

The modified gemu process maps the guest's physical memory and calls the kernel mode

driver to execute in guest mode.

The I/O model is directly derived from qemu's, with support for copy-on-write disk images

and other gemu features.

1/O Performance

The KVM model has some performance advantages when performing I/O on behalf of the

guest'. Consider the sequence of events in a privileged-guest system:

—_—
Sequence of events ¢ Guest issues an [/0O instruction
in a privileged- H . the VO i ; d dsi the privil (

. ervisor traps the instruction and forwards it to the privile est (some
guest system: YP P P ged gu

instructions may be handled internally)
* The hypervisor's scheduler has to schedule the privileged guest
* A guest switch is performed into the privileged guest

* The privileged guest's interrupt handler is invoked, which causes an

170 process to be scheduled using the privileged guest's scheduler
* A process context switch is performed

® The I/O process initiates the I/O on behalf of the guest

* The I/O process signals (through the privileged guest kernel and hypervisor)

that the IO initiation is complete
* The hypervisor switches back into the original guest

* The hypervisor resumes the guest code

' We acknowledge the fact the mentioned performance benefit is of unknown measure at this point,
no comparative benchmarks were run to quantify it. This should be viewed qualitatively.

4 Copyright ©2006 Qumranet Inc.



/

Same sequence on a KVM host:

* Quest issues an I/0 instruction

* Host kernel traps the instruction and exits into the VM's userspace

(some instructions may be handled in kernel mode)
* The VM's user-space initiates the I/O on behalf of the guest
* The VM's user-space returns to the kernel

* The kernel resumes guest code

Management

Since a virtual machine is simply a process, all of the standard Linux process management
tools apply: one can destroy, pause, and resume a virtual machine with the kill command (or
even using Curl-C and similar keyboard shortcuts) and view resource usage with top.
Permissions are handled by the normal Linux method: the virtual machine belongs to the user
who started it (which need not be root; all that is required is access to /dev/kvim), and all

accesses are verified by the kernel.

This allows system administrators to manage virtual machines with existing tools, allowing

systems to be virtualized incrementally.

SEE—— Conclusions

Integrating the : g ; "
b : Leveraging new silicon capabilities, the KVM model introduces an approach to virtualization

ervisor
czll::biliﬁes into that is fully aligned with Linux architecture and all of its latest achievements. Furthermore,
a host Linux integrating the hypervisor capabilities into a host Linux kernel as a loadable module can

kermelasa simplify management and improve performance in virtualized environments, while minimizing

loadable medule impact on existing systems.
can simplify
management
and improve
performance

in virtualized

environments.

wn

Copyright ©2006 Qumranet Inc.



