查看Nvidia GPU Architecture的源代码
←
Nvidia GPU Architecture
跳转到:
导航
,
搜索
因为以下原因,你没有权限编辑本页:
您刚才请求的操作只有这个用户组中的用户才能使用:
用户
您可以查看并复制此页面的源代码:
== Overview == The GPU architecture is built around a scalable array of <b style="color: #5a0">Streaming Multiprocessors (SM)</b> [[文件:Nv-dgx1.jpg]] The key components of a SM: * CUDA cores (ALU + FPU) * Double Precision Units (DPU) * Special Function Units (SPU) * Load/Store Units (LD/ST) * Register File * Shared Memory/L1 Cache * Warp Scheduler '''Cards:''' # GTX980 (2048 CUDA cores, 16SMs, 28nm, 5.2billion, 4GB, 4.981 TFLOPS / DPU: 0.1556TFLOPs, 165W, 2014.9, $549) [https://www.techpowerup.com/gpu-specs/evga-gtx-980.b3061 evga gtx980] # GTX1050 (640 CUDA cores, 5SMs, 14nm, 3.3billion, 4GB, 1.458 TFLOPS / DPU: 0.04556TFLOPs, 75W, 2018.1) [https://www.techpowerup.com/gpu-specs/geforce-gtx-1050-max-q.c3074 NVIDIA GeForce GTX 1050 Max-Q] ----> Pascal GP107 # GTX1050 Ti (768 CUDA cores, 6SMs, 14nm, 3.3billion, 4GB, 1.983 TFLOPS / DPU: 0.06197TFLOPs, 75W, 2018.1) [https://www.techpowerup.com/gpu-specs/geforce-gtx-1050-ti-max-q.c3075 NVIDIA GeForce GTX 1050 Ti Max-Q] ----> Pascal GP107 # RTX3050 (2048CUDA cores, 16SMs, 64 TensorCore, 16 RTCore, 8nm, 12billion, 4GB, 4.329 TFLOPS/ DPU: 0.06765TFLOPs, 75W, 2021.5 ) [https://www.techpowerup.com/gpu-specs/geforce-rtx-3050-mobile.c3788 NVIDIA GeForce RTX 3050 Mobile] -----> Ampere GA107 # RTX3050 Ti (2560CUDA cores, 20SMs, 80 TensorCore, 20 RTCore, 8nm, 12billion, 4GB, 5.299 TFLOPS/ DPU: 0.08280TFLOPs, 75W, 2021.5 ) [https://www.techpowerup.com/gpu-specs/geforce-rtx-3050-ti-mobile.c3812 NVIDIA GeForce RTX 3050 Ti Mobile] -----> Ampere GA106 # GTX1070 / GTX1080 (2560 CUDA cores, 20 SMs, 16nm, 7.2billion, 8GB, 8.2TFLOPs / DPU: 0.257TFLOPs, 180W, 2016.5) # GTX1080 Ti / TITAN X (3584 CUDA cores, 28 SMs, 16nm, 12billion, 12GB, 10TFLOPs / DPU: 0.317TFLOPs, 250W, 2016.8) # TITAN X (3584 CUDA cores, 28 SMs, 16nm, 12billion, 12GB, 10.97TFLOPs / DPU: 0.3429TFLOPs, 250W, 2016.8) [https://www.techpowerup.com/gpu-specs/titan-x-pascal.c2863 NVIDIA TITAN X Pascal]----> Pascal GP107 # RTX3080 (8704 CUDA cores, 68SMs, 272 TensorCore, 68 RTCore, 8nm, 28.3billion, 10GB, 29.77 TFLOPs / DPU: 0.465 TFLOPs, 320W, 2020.9 $699) [https://www.techpowerup.com/gpu-specs/geforce-rtx-3080.c3621 RTX3080][https://www.techpowerup.com/gpu-specs/geforce-rtx-3080-ti.c3735 RTX3080 Ti] # RTX3080 Ti (10240 CUDA cores, 80SMs, 320 TensorCore, 80 RTCore, 8nm, 28.3billion, 12GB, 34.10 TFLOPs / DPU: 0.5328 TFLOPs, 350W, 2021.5 $1199) [https://www.techpowerup.com/gpu-specs/geforce-rtx-3080-ti.c3735 RTX3080 Ti] ---> Ampere GA102 # RTX3090 Ti (10752 CUDA cores, 84SMs, 336 TensorCore, 84 RTCore, 8nm, 28.3billion, 24GB, 40TFLOPs / DPU:0.625TFLOPs, 450W, 2022.1) [https://www.techpowerup.com/gpu-specs/geforce-rtx-3090-ti.c3829 Nvidia RTX3090 Ti][https://www.techpowerup.com/gpu-specs/geforce-rtx-3090.c3622 RTX3090] ----> Ampere GA102 # Tesla K80 (Kepler GK210/28nm/300W/2x12GB/FP16 8 TFLOPS/FP32 8TFLOPS/2x2496 CUDA Cores/2x208 TMUs/2x48 ROPs/2x13 SMX Cnout) 2014.11 # RTX 4050 (Ada Lovelace AD107/5nm/100W/6GB/FP16 13.5 TFLOPS/FP32 13.5 TFLOPS/2560 CUDA cores/80 TMUs/32 ROPs/18 SM Count/120 Tensor Cores/18 RT Cores) # Tesla V100 (Volta GV100/12nm/300W/16GB/FP32 14TFlops/FP16 28TFlops/5120 CUDA Cores/320 TMUs/128 ROPs/80 SM Count/640 Tensor Cores/40 RT Cores) 2017.6 # Tesla T4 (Turing TU104/12nm/70W/16GB/FP32 8TFlops/FP16 65TFlops/INT8 130 TOPS/2560 CUDA Cores/160 TMUs/64 ROPs/40 SM Cnout/320 Tensor Cores/40 RT Cores) 2018.9 * https://www.techpowerup.com/gpu-specs/ <br>
返回到
Nvidia GPU Architecture
。
个人工具
登录
名字空间
页面
讨论
变换
查看
阅读
查看源代码
查看历史
操作
搜索
导航
首页
社区专页
新闻动态
最近更改
随机页面
帮助
工具箱
链入页面
相关更改
特殊页面