查看DA的源代码
←
DA
跳转到:
导航
,
搜索
因为以下原因,你没有权限编辑本页:
您刚才请求的操作只有这个用户组中的用户才能使用:
用户
您可以查看并复制此页面的源代码:
=== KDE === 核密度估计 (Kernel Density Estimate, KDE), 用来估计未知密度函数,属于非参数检验方法之一 <source lang=python> >>> np.random.normal(loc=(10,20),scale=(4,2),size=(5,2)) array([[15.87305077, 20.3740753 ], [14.40449246, 20.73788215], [12.51111038, 20.81289712], [ 9.55461887, 21.48781844], [-0.72336527, 18.81365079]]) >>> dist = pd.DataFrame(np.random.normal(loc=(10,20), scale=(4,2), size=(1000, 2)), columns=['a', 'b']) >>> dist.agg(['min', 'max', 'mean', 'std']).round(decimals=2) >>> fig, ax = plt.subplots() >>> dist.plot.kde(ax=ax, legend=False, title='Histogram: A vs. B') >>> dist.plot.hist(density=True, ax=ax) >>> ax.set_ylabel('Probability') >>> ax.grid(axis='y') >>> ax.set_facecolor('#d8dcd6') </source> <source lang=python> import pandas as pd import matplotlib.pyplot as plt import seaborn as sns p = pd.read_csv('./data/da03-press.csv',index_col='time') pp = p['Press'] pp.plot.hist(bins=150, rwidth=.9, density=True, color='C2', alpha=0.8) pp.plot.kde(bw_method=0.1737, color='C1') plt.ylabel('Probability'); plt.xlim(xmin=3200,xmax=4200); plt.xlabel('hPa') plt.grid(linewidth=0.8) plt.show() #sns.distplot(pp, color="#ff8000") #plt.show() </source> '''bw_method''' 一般取 n^(-1/5) 更多参考:https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html#Notes <source lang=python> >>> s1 = np.random.normal(-1.0, 1, 320) >>> s2 = np.random.normal(2.0, 0.6, 32) >>> s = np.hstack([s1, s2]) >>> pdf = stats.kde.gaussian_kde(s) >>> x = np.linspace(-5, 5, 200) >>> plt.plot(x, pdf(x), 'r') >>> plt.hist(s, normed=1, alpha=0.45, color='purple') >>> plt.show() </source> stats.norm.rvs(), ppf(), pdf(), cdf(): https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html <br>
返回到
DA
。
个人工具
登录
名字空间
页面
讨论
变换
查看
阅读
查看源代码
查看历史
操作
搜索
导航
首页
社区专页
新闻动态
最近更改
随机页面
帮助
工具箱
链入页面
相关更改
特殊页面