Ch12 Physiology of Neurons

来自Jack's Lab
(版本间的差异)
跳转到: 导航, 搜索
(神经元接收、组合、转换、存储和发送信息)
第11行: 第11行:
 
=== 神经元接收、组合、转换、存储和发送信息 ===
 
=== 神经元接收、组合、转换、存储和发送信息 ===
 
<b style=color:#0ae>Neurons receive, combine, transform, store, and send information</b>
 
<b style=color:#0ae>Neurons receive, combine, transform, store, and send information</b>
 +
 +
Neurons have arguably the most complex job of any cell in the body. Consequently, they have an elaborate morphology and physiology. Each neuron is an intricate computing device. A single neuron may receive chemical input from tens of thousands of other neurons. It then combines these myriad signals into a much simpler set of electrical changes across its cellular membrane. The neuron subsequently transforms these ionic transmembrane changes according to rules determined by its particular shape and electrical properties and transmits a single new message through its axon, which itself may contact and inform hundreds of other neurons. Under the right circumstances, neurons also possess the property of memory; some of the information coursing through a neuron’s synapses may be stored for periods as long as years.
 +
 +
神经元可以说是体内任何细胞中最复杂的工作。因此,它们具有复杂的形态和生理学。每个神经元都是一个复杂的计算设备。单个神经元可以接收来自数以万计的其他神经元的化学输入。然后,它将这些无数信号组合成一组更简单的细胞膜电变化。神经元随后根据其特定形状和电特性决定的规则转换这些离子跨膜变化,并通过其轴突传递一条新信息,轴突本身可以接触并通知数百个其他神经元。在适当的情况下,神经元也具有记忆的特性;通过神经元突触传输的一些信息可以存储长达数年。
 +
 +
 +
This general scheme of neuronal function applies to most neurons in the vertebrate nervous system. However, the scheme is endlessly variable. For example, each region of the brain has several major classes of neurons, and each of these classes has a physiology adapted to perform specific and unique functions. In this chapter, the general principles of neuronal function are outlined, and the almost unlimited variability contained within the general schema is discussed.
 +
 +
这种神经元功能的一般方案适用于脊椎动物神经系统中的大多数神经元。然而,这个方案是无穷无尽的。例如,大脑的每个区域都有几大类神经元,每类神经元都有适应于执行特定和独特功能的生理学。在本章中,概述了神经元功能的一般原理,并讨论了一般图式中包含的几乎无限的可变性。
  
 
<br>
 
<br>

2024年12月25日 (三) 17:07的版本

神经元生理学

本页英文内容取自:经典教材医学生理学(第三版) (Medical Physiology, 3rd Edtion, Walter F Boron, published in 2016)

中文内容由 BH1RBH (Jack Tan) 粗糙翻译

蓝色 【注】 后内容为 BH1RBH (Jack Tan) 所加之注释

目录

1 Overview

1.1 神经元接收、组合、转换、存储和发送信息

Neurons receive, combine, transform, store, and send information

Neurons have arguably the most complex job of any cell in the body. Consequently, they have an elaborate morphology and physiology. Each neuron is an intricate computing device. A single neuron may receive chemical input from tens of thousands of other neurons. It then combines these myriad signals into a much simpler set of electrical changes across its cellular membrane. The neuron subsequently transforms these ionic transmembrane changes according to rules determined by its particular shape and electrical properties and transmits a single new message through its axon, which itself may contact and inform hundreds of other neurons. Under the right circumstances, neurons also possess the property of memory; some of the information coursing through a neuron’s synapses may be stored for periods as long as years.

神经元可以说是体内任何细胞中最复杂的工作。因此,它们具有复杂的形态和生理学。每个神经元都是一个复杂的计算设备。单个神经元可以接收来自数以万计的其他神经元的化学输入。然后,它将这些无数信号组合成一组更简单的细胞膜电变化。神经元随后根据其特定形状和电特性决定的规则转换这些离子跨膜变化,并通过其轴突传递一条新信息,轴突本身可以接触并通知数百个其他神经元。在适当的情况下,神经元也具有记忆的特性;通过神经元突触传输的一些信息可以存储长达数年。


This general scheme of neuronal function applies to most neurons in the vertebrate nervous system. However, the scheme is endlessly variable. For example, each region of the brain has several major classes of neurons, and each of these classes has a physiology adapted to perform specific and unique functions. In this chapter, the general principles of neuronal function are outlined, and the almost unlimited variability contained within the general schema is discussed.

这种神经元功能的一般方案适用于脊椎动物神经系统中的大多数神经元。然而,这个方案是无穷无尽的。例如,大脑的每个区域都有几大类神经元,每类神经元都有适应于执行特定和独特功能的生理学。在本章中,概述了神经元功能的一般原理,并讨论了一般图式中包含的几乎无限的可变性。


1.2 神经信息从树突流向胞体,从轴突流向突触

Neural information flows from dendrite to soma to axon to synapse


2 树突中的信号传导

SIGNAL CONDUCTION IN DENDRITES

2.1 树突减弱突触电位

Dendrites attenuate synaptic potentials


2.2 树突状膜具有电压门控离子通道

Dendritic membranes have voltage-gated ion channels


3 躯体中尖峰模式控制

CONTROL OF SPIKING PATTERNS IN THE SOMA

3.1 神经元可以将简单的输入转换为各种输出模式

Neurons can transform a simple input into a variety of output patterns


3.2 本征发射模式由动力学相对较慢的各种离子流决定

Intrinsic firing patterns are determined by a variety of ion currents with relatively slow kinetics


4 轴突传导

AXONAL CONDUCTION

4.1 轴突专门用于快速、可靠和高效的电信号传输

Axons are specialized for rapid, reliable, and efficient transmission of electrical signals


4.2 动作电位通常在初始节段启动

Action potentials are usually initiated at the initial segment


4.3 有髓轴突的传导速度随直径线性增加

Conduction velocity of a myelinated axon increases linearly with diameter


4.4 脱髓鞘轴突缓慢、不可靠或根本不传导动作电位

Demyelinated axons conduct action potentials slowly, unreliably, or not at all


5 Reference


个人工具
名字空间

变换
操作
导航
工具箱